Pontine omnipause activity during conjugate and disconjugate eye movements in macaques.

نویسندگان

  • C Busettini
  • L E Mays
چکیده

Previous reports have shown that saccades executed during vergence eye movements are often slower and longer than conjugate saccades. Lesions in the nucleus raphe interpositus, where pontine omnipause neurons (OPNs) are located, were also shown to result in slower and longer saccades. If vergence transiently suppresses the activity of the OPNs just before a saccade, then reduced presaccadic activity might mimic the behavioral effects of a lesion. To test this hypothesis, 64 OPNs were recorded from 7 alert rhesus monkeys during smooth vergence and saccades with and without vergence. The firing rate of many OPNs was modulated by static vergence angle but not by version and showed transient changes during slow vergence without saccades. This modulation was smooth, and not the abrupt pause seen for saccades, indicating that OPNs do not act as gates for vergence commands. We confirmed that saccades made during both convergence and divergence are significantly slower and longer than conjugate saccades. OPNs paused for all saccades, and the pause lead (interval between pause onset and saccadic onset) was significantly longer for saccades with convergence, in agreement with our hypothesis. Contrary to our hypothesis, pause lead was not longer for saccades with divergence, even though these saccades were slowed as much as those occurring during convergence. Furthermore, there was no significant correlation, on a trial-by-trial basis, between pause lead and saccadic slowing. These results suggest that it is unlikely that presaccadic slowing of OPNs is responsible for the slower saccades seen during vergence movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic characterization of agonist and antagonist oculomotoneurons during conjugate and disconjugate eye movements.

In this report, we provide the first quantitative characterization of the relationship between the spike train dynamics of medial rectus oculomotoneurons (OMNs) and eye movements during conjugate and disconjugate saccades. We show that a simple, first-order model (i.e., containing eye position and velocity terms) provided an adequate model of neural discharges during both on and off-directed co...

متن کامل

Macaque pontine omnipause neurons play no direct role in the generation of eye blinks.

We recorded the activity of pontine omnipause neurons (OPNs) in two macaques during saccadic eye movements and blinks. As previously reported, we found that OPNs fire tonically during fixation and pause about 15 ms before a saccadic eye movement. In contrast, for blinks elicited by air puffs, the OPNs paused <2 ms before the onset of the blink. Thus the burst in the agonist orbicularis oculi mo...

متن کامل

The brain stem saccadic burst generator encodes gaze in three-dimensional space.

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions betw...

متن کامل

Disorders of binocular control of eye movements in patients with cerebellar dysfunction.

Recent research has implicated the cerebellum in conjugate ocular motor control, including steady gaze-holding and accuracy of pursuit and saccades. Whether the cerebellum also has a role in the control of the alignment of the eyes during fixation and of the yoking of the eyes during movement i. less certain. We have studied binocular (disconjugate) ocular motor control in nine patients with ce...

متن کامل

Vergence deficits in patients with cerebellar lesions.

The cerebellum is part of the cortico-ponto-cerebellar circuit for conjugate eye movements. Recent animal data suggest an additional role of the cerebellum for the control of binocular alignment and disconjugate, i.e. vergence eye movements. The latter is separated into two different components: fast vergence (to step targets) and slow vergence (to ramp and sinusoidal targets). The aim of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2003